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FOREWORD I I 

The work described was carried out in the Gas Dynamics Laboratories 
I 
I of the Department of Aerospace Engineering. The personnel were: Profes - 

sor Arnold M. Kuethe, Chief Investigator; Professors Richard L. Phillips I 
and Stuart W. Bowen; Robert L. Harvey and Leland M. Nicolai, doctoral 

students; Ronald Kapnick and Richard Wallace, research assistants. I 

ii 



1 

TABLE O F  CONTENTS 

Page 

Summary of Activities (February 28, 1967 - August 28, 1967) 1 

Program for Period (August 28, 1967 - March 1, 1968) 6 

Personnel 7 

Appendix A The Fluid Mechanics of Magnetically Balanced Arcs 
in Cross-Flows 8 

Appendix B Spectroscopic Investigations of the Supersonic Air Arc 16 

Appendix C Preliminary Design of Magnetic Field Coils 22 

r 

iii 



I LIST OF FIGURES 

Fig. 1. Schematic of free jet setup. 

Fig. Al. 

I Fig. A2. 

Fig. Bl .  

Fig. C1. 
I 
I 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I Fig. C2. 

Relative orientation of the velocity, magnetic, and 
electric fields. 

Qualitative model of balanced arc. 

Supersonic air a r c  spectrum. Run No. 545 - Mach No. = 2.5 

Example of magnet coil giving B, uniform to 1% over 10 cm 
a r c  length and 10 cm clearance between pole faces 
(dimensions in cm). 

Magnetic field properties. 

1v 

Page 

3 

9 

12 

20 

26 

28 



I 

i 
1 
I 
t 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 

SUMMARY OF ACTIVITIES 

February 28, 1967 - August 28, 1967 

1. Some of the results and analyses are described in Appendix A, which 

is an abridged version of a paper by Arnold M. Kuethe, Robert L. Harvey and 

Leland M. Nicdai, now in final stages of preparation. The manuscript will be 

submitted to the AIAA Journal and a copy will be sent to NASA by early November. 

The most important results from the analyses of the experimental data are: 

(a) The definition of a characteristic velocity for  the analysis of the internal 

circulation by the conservation equations for the flow of a conductive fluid; (b) 

there is a range of parameters for the supersonic balanced arc within which non- 

equilibrium, Hall current, and radiation effects may be neglected and within which 

the Lorentz convection parameter (the ratio of Lorentz force to the viscous force 

on a representative element of the arc) is the most important similarity parameter 

governing internal flow. 

2. Preliminary spectroscopic studies of the supersonic balanced a r c  are 

described in  Appendix B. It is found that under some circumstances (not yet identi- 

fied) Na and Cu atom lines are present in the column. The technique used is known 

as a slitless spectrogram, a method commonly applied to obtain spectra of lightning 

strokes. 

3. Preliminary design of magnetic field coils to provide a uniform field over 

the cross-section and length of balanced arcs  in a subsonic free jet are described 
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in Appendix C. The setup is designed to check the influence of the boundaries of the 

cross-flow on the magnetic balancing and stabilization of a rcs  in cross-flow and to 

extend the investigations of Roman and Myers (Ref. 6 of Appendix A) toward a more 

detailed understanding of the mass, momentum, and energy transfer to the cross- 

flow. An improved electrode design, by Professor Richard L. Phillips will permit 

observation along the axis of the arc and will facilitate control of the flow along the 

a r c  axis; this latter feature is likely to be an important influence on the rate of 

mass transfer to the cross-flow. 

4. 

Wallace under the supervision of Professor Phillips, and is now being calibrated. 

Using this tunnel, it will be possible to study the behavior of an electric a r c  in a 

stream of air and other gases, specifically argon, with velocities ranging from 

twenty to one hundred feet per second. Various adaptors will be fabricated to per- 

mit variation of the jet dimensions, thus permitting evaluation of the influence of 

the proximity of the jet boundaries on the dimensions, stability characteristics, 

and transfer properties of the arc. 

The open jet wind tunnel for these studies has been designed and built by Richard 

The tunnel was designed to produce a low turbulence free jet with a nearly flat 

velocity profile. A schematic diagram with significant dimensions is shown in 

Fig. 1. 

The tunnel's contraction section, settling chamber, screen frames, and the 

straight section, were fabricated from fiberglass. Fiberglass was used because 

it is easily fabricated into the required forms and is smoother and cheaper than 

other suitable materials. 

2 
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The screens a r e  bonded to their respective frames by epoxy. A special mount- 

ing technique was developed to insure that the screens would be flat and properly 

aligned. The screen frame was sandwiched between two larger pieces of plywood. 

First, the screen was carefully aligned with and fastened to the upper board which 

has a large (17 in. x 17 in.) square hole in it. This board is bolted to the other, 

with the screen frame in between. When the bolts a r e  tightened, the screen draws 

tight across the frame. The epoxy is applied while the screen and screen frame 

are in their desired position. After the epoxy has cured, the excess screen, which 

is now fastened to the board and to the frame, is cut away. A s  a result the screen 

is secured in its desired position. 

The working gas enters through a baffle which spreads the flow from its initial 

3/4 square inch to a final 144 square inch cross section. The six plates of the 

baffle are perforated with 1/2 in. diameter holes. The holes are offset and hence 

cause the flow to expand. Plates range in size from 2 in. square to 12 in. square. 

The stainless steel screens functions in two distinctly different ways. First 

as in most wind tunnels, they remove turbulence by breaking the large eddies 

into smaller ones which decay more rapidly. All three screens perform this 

task. However, the first two screens are special. Since their pressure drop 

coefficient is very nearly equal to two, they will remove all velocity gradients 

and create an essentially flat velocity profile. Over one hundred and twenty-five 

pressure drop coefficients were calculated to find the most desirable screen. 

4 
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Gaskets were formed from General Electric silicone rubber and used between 

all sections of the tunnel. 

The tunnel is now completely assembled. The calibration data will yield 

turbulence levels and velocity gradients in the test section. Hopefully, the useful 

testing region will extend to about four inches away from the tunnel exit. 

5. Robert L. Harvey and Leland M. Nicolai, doctoral students, have spent 

considerable time during the six months period on computer programs for various 

simplified models of the balanced arc. Preliminary results are being checked. 

The results will be incorporated in the authors' doctoral theses, copies of which 

will be sent to NASA. 
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PROGRAM FOR PERIOD 

August 28, 1967 - March 1, 1968 

The detail design of the electrode assembly will be carried out and a set of 

coils to generate the external field will be built. 

If sufficient funds and time a r e  available the electrode assembly will be fabri- 

cated and the tunnel assembled for tests. 

The first tests will involve balancing the a r c  in a closed tunnel and in  an open 

jet of the same dimensions. The objective will be to determine the influence of 

the external stream boundaries on the arc properties. If the influence is appreci- 

able, a6 it is likely to be if  the arc blocks as much of the flow as it appears to in 

the Roman-Myers experiments, subsequent work will be directed toward deter- 

mining the resulting effect of the boundaries on the transfer properties, including 

rate of loss of mass by the arc to the external flow. 

Computer studies of the flow field in the case of the arc to determine the 

influence of the similarity parameters on the intensity of the internal circulation 

and on the temperature distributions will be continued. 

Spot checks of some of the data at supersonic speeds will be made, directed 

particularly toward determining whether nonequilibrium effects can be identified 

with parameters such as pressure and arc  current such that the Lorentz param- 

eter is no longer the only similarity parameter for the a r c  properties. 

6 
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PERSONNEL 

From January 1 to June 1, 1968, the period during which Professor Kuethe 

will be on sabbatical leave, the program will be under the supervision of Profes- 

sors Richard R. Phillips and Stuart W. Bowen. 

The thesis of Robert L. Harvey will probably be completed before January 1, 

1968 and that of Captain Leland M. Nicolai will probably be completed during the 

summer of 1968. 
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THE FLUID MECHANICS OF MAGNETICALLY BALANCED 

Arnold M. Kuethe 

ARCS IN CROSS-FLOWS* 

INTRODUCTION 

Our knowledge of even the gross aspects of mass, momentum, and energy transfer 

between an a r c  and an external stream depends today almost completely on empirical 

data. On the other hand, solutions to such practical problems as determination of the 

mass loss from a gaseous fission reactor, and the maximization of the acceleration 

in r x  B' o r  E x  B' accelerators will require detailed knowledge of fluid and plasma 

interactions such as occur at the boundary of a balanced arc .  This paper identifies, 

through inference from the conservation equations and experimental data, some fea- 

tures of these mechanisms and the governing parameters. 

ciable velocity was reported by Bond in 1962(2). These experiments, in which fairly 

intense external magnetic fields were utilized to balance dc a rcs  in supersonic external 

flows were extended ( 3 9  4, and led to the determination of the gross properties of these 

arcs.  One of these properties, a slant angle a few degrees greater than the Mach 

angle of the external flow was found to occur whenever the arc was steady; the cause 

of the slant is not known but Bond pointed out that the degree of ionization within the 

a r c  will be near its maximum i f  the a rc  slants at the Mach angle. 

The first instance of a steady arc balanced magnetically in a cross-flow of appre- 

The experimental results described here utilized the same equipment as that for 

Refs. 2-4 and extends that work toward the delineation of a model of the a r c  as a 

basis for calculating its fluid mechanical structure. The configuration of the elec- 

tric, magnetic, and flow fields is indicated in Fig. Al. 

T h i s  account abstracts the work to be reported in Ref. 1. Preliminary results 
and studies were described in AIAA paper 67-96, by the same authors, presented at 
the 5th Aerospace Sciences Meeting, New York, January 23-26, 1967. 

Collins, Colorado, August 21-23, 1967 and will be printed in the Proceedings. 
'fThis condensation was presented at the Midwest Conference on Mechanics, Fort 
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The work of Roman and Myers (59 6, shows that a steady a r c  normal to a subsonic 

cross-flow can be achieved when the arc is balanced magnetically in a free jet. The 

a r c  was remarkably steady, S O  that velocity distributions in the wake could be meas- 

ured over a range of arc currents and jet speeds. 

The first important conclusion relating to the fluid mechanical structure is that 

a steady a r c  has a central core which is impervious to the cross-flow; the bases 

for this conclusion are: (1) high speed motion pictures show that there exists an 

axial flow along the balanced a rc  in supersonic flow"), (2) a practically stagnant 

wake exists behind the a r c  in subsonic flow (5' "), (3) spectroscopic results indicate 

that the a r c  in a subsonic airflow was  practically pure argon when that gas was in- 

jected at the cathode . (5) 

The dimensions of the central impervious core were assumed to approximate 

those of the visible core of the arc,  since the isotherm above which the radiation 

in the visible range is sufficient to expose the photographic film (5000 to 6000°K 

for air) is near the threshold below which the electrical conductivity and therefore 

the upstream Lorentz force on the fluid elements vanishes. The dimensions of 

the visible core of the a r c  were measured in both the subsonic (5' ") and super- 

sonic") experiments by a suitable arrangement of mirrors  whereby two images 

approximately 90' apart were focused on the same frame of the film. These 

indicated that the a r c  cross-section was oval in the plane normal to the axis; the 

major axis was normal to the cross-flow direction and 1 . 3  to 1 .8  times the minor 

(streamwise) axis. 

Some limited attempts have been made (7' 8 9  ') to attack the problem of the 

balanced a r c  by solving the conservation equations for the entire flow field with 

boundary conditions at infinity. The complete solution would comprise determina- 

tion of the flow fields, internal and external, for a plasma column whose dimen- 

sions are determined by the conditions for equilibrium between the internal and 

external pressure fields. The solution is incomparably more difficult than that 

of determining the flow field around a bluff body of fixed dimensions. 

i 

For the 

10 



arc,  even if  the cross-section shape were known, the boundary conditions neces- 

sary for calculating tk flow in the boundary layer, and particularly near the flow 

separation point, a r e  unknown. One is accordingly forced to seek a model of the 

a r c  which will provide a framework for calculating a r c  properties susceptible of 

experimental check. 

The experiments at subsonic and supersonic speeds suggest the qualitative 

model shown in Fig. A2; the model incorporates the oval or elliptical cross- 

section broadside to the flow, flow separation at the maximum section and the near 

stagnation wake, and an internal circulation set up by differential Lorentz 

forces generated by a constant magnetic field and a nonuniform current density 

over the cross-section. The indicated mass transfer from the a r c  to the exter- 

nal stream would occur when the fluid elements near the boundary are cooled 

sufficiently so that the current density and therefore the Lorentz force decreases 

sufficiently so that the element is swept downstream. 

SIMILARITY PARAMETERS 

We assume that because of the internal circulation the properties over the 

central core are sufficiently uniform so that density variations can be neglected 

and the viscosity coefficient p, the heat conductivity k, the specific heat at constant 

pressure c are assumed constant. The nondimensional momentum, energy and 

continuity equations become 
P 

- -  d g  - - v p + j ~  + L p 2 ~  
dt “JLeF 

- Ed div u = 

where = r / U  (U is a characteristic 

j = J/J1 (J1 is a characteristic current 
1 1  

” lP1 
2 velocity), p = P/pUl (P is the pressure), 

density), 8 = T/T1 (T1 is a characteristic 

11 
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2 temperature), L = p1 I Bd /pl (I is the arc current, B the magnetic field intensity, 

d the minor axis of the a r c  cross-section), Pr = cpl pl/kl, E is the voltage drop 

along the arc ,  Gx is the unit vector in the x direction, and E is the "sink strength" 

representing the difference bet.ween the rate at which mass is supplied by the axial 

flow and the rate at which mass is transfered to the boundary. The internal veloci- 

ties are assumed small compared with sonic speed and the viscous dissipation is 

neglected. Also, effects of radiation, of departures from equilibrium in the a r c  

plasma and of Hall currents are neglected. 

C S 

S 

The values of J1 and T1 are average values over the visible cross-section and 

The "Lorentz convection parameter" Lc is the ratio of the Lorentz force on a 
cpl pl, and k are corresponding properties. 

representative fluid element to the viscous force; it is therefore analogous to the 

Grashof number in free convection. Further, except for effects of joule- heat-, . 

ing, the circulation within the a r c  core is closely analogous with that resulting 

from gravity forces within a centrally heated horizontal cylinder of gas. 

1 

A suitable characteristic velocity, as indicated by the experimental results, is 

u1 = 4 p q  

The ratio U1/Ucon(Umnis the velocity component of the external flow normal to 

the arc) is found to be constant for the subsonic tests of Roman and Myers, and 

another constant for the supersonic tests at Mach numbers 2. 5 and 3.0. 

The experimental results at Mach numbers 2. 5 and 3.0 show that EI/klT1 

(the ratio of the rate of joule heating of a representative element, EJ,  to the rate 

at which heat is conducted from the element klTl/d ) is proportional to \/Lc over 

a wide range of operating conditions. On the basis of Eqs. (1) and (2) it is there- 

fore concluded that there exists a range of conditions for which the Lorentz con- 

vection parameter is the governing parameter for the internal flow. 

2 

The above proportionality breaks down for the Mach 3. 5 and for the subsonic 

experimental results of Roman and Myers. For the former, this anomalous 

13 
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behavior is consistent with appreciable nonequilibrium effects in the form of a high 

electron temperature compared with the gas temperature; the low ambient pressures 

of 0.01 to 0.02 atmospheres favor this explanation. For the subsonic experiments 

of Roman and Myers the small dimensions of the free jet (2 x 2 in.) and the resulting 

high effective "blockage ratios'' for the arc  (up to 0. 5) indicate that the anomalous 

behavior may result from the effects of large and variable jet boundary interference 

on the dimensions and properties of the arc. 

CONCLUSIONS 

The conclusion is drawn that there exists a range of operating conditions for 

which the steady magnetically balanced arc  in a cross-flow may be treated as a 

central impervious core of relatively uniform properties. Within this range the 

conservation equations for flow of a conducting fluid under equilibrium conditions 

with negligible Hall effects are valid-to a good approximation in the core; the trans- 

f,er of mass,  momentum, and energy to the external flow t h e n ' a e s  place through 

a relatively thin boundary layer. 
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Appendix B 

SPECTROSCOPIC INVESTIGATIONS OF THE 
SUPERSONIC AIR ARC 

Stuart W. Bowen 

INTRODUCTION 

Several questions of particular interest in understanding the various physical 

mechanisms important to the transversely blown a r c  in air are: 

1. 

2. 

What is the origin of the radiation emanating from the arc. 

Can this radiation be used to infer properties of interest such as tempera- 
ture, species density, degree of ionization and the variation of these 
properties along the arc.  

Are these measurements consistent with a r c  properties previously inferred 
from current and voltage measurements and in particular does the assump- 
tion of LTE appear reasonable. 

3. 

A simple spectroscopic investigation in the visible spectral range of the super- 

sonic air a r c  has been initiated with the objective of answering these questions. 

Only the first question has so far been answered. Some progress has been 

made on the second while the third question of course hinges on the outcome of the 

second. 

EXPERIMENTAL PROGRAM 

After initiation by the firing wire the arc moves to an equilibrium position in  

the tunnel where the drag and Lorentz forces are balanced. Because of unavoid- 

able variations in the experimental conditions from run to run, the equilibrium 

position of the a r c  cannot be precisely predicted. Conventional spectroscopic 

techniques wherein the a r c  image is focussed onto the spectrograph slit were 

tried, but the uncertainty in predicting the a r c  position was large enough so that 

the arc image did not fall on the slit. 

The arc is a long thin phenomena so that the technique known as a slitless 

spectrogram used to obtain lightning stroke spectra suggested itself. 

16 



In this method a conventional camera is preceded by a dispersing element 

such a s  a transmission grating. 

Z e m  
Camera Lens Order 

First. 
Order 

By suitably orienting the grating rulings parallel to the lengthwise dimension 

of the a r c  image, one obtains a series of monochromatic images of the a r c  which 

include the zero order with the first order spectra, arrayed on both sides sf the 

zero order image. The camera lens then focusses these images o ~ t o  the film" 

Usually only the zero order and first order spectra on one side can be included 

in field of the camera lens, One moves as far away from the object as possible 

SQ as to provide a smaller a r c  image and hence higher spectral resolution as 

well as to make the extreme rays passing through the edges of the grating more 

nearly parallel 

If M is the spectral resolution andAx is t h e  a r c  image width on the film then 

AA = (dh/dx) Ax where dAidx is the reciprocal dispersion provided by the grating- 

lens combination. For the present case a 50 mrn f / f ,  5 lens was used in csnjunc- 

Rion with a 590 line/rnm grating giving dh/dx = 337 Akmm in  the first order, The 

resulting spectral resolution is about 30 A for a f cm diameter a r c  at  I O  focal 

lengths o r  50 meters, io e, Ax = f mm on film. A Nikon 35 mm camera having 

a motor drive is used to give 4 frarnes/seco Typical exposures a re  I!250 sec 

at f J f .  5. 

o 

0 3 

l a  



The blackening along the spectral 'lline'' represents the spectral intensity 

along the a r c  length. 

Note that the lack of a slit obvioates the necessity of accurate positional pre- 

diction. 

Wavelength calibration is provided by photographing rare gas discharge tubes 

(Plucker Tubes) and plotting wavelength vs. distance on the film measured from 

the zero order image. A measuring engine having an accuracy of - + lp is used 

for the measuring. The precision achieved is much less, being limited by the 

arc image size on the film. The Plucker tube is placed at the same distance from 

the lens as the arc. 

Intensity calibration is obtained by photographing the flat tungsten filament of 

a standard pyrometric lamp placed at the a r c  distance. Correction must be made 

because the angular width of the tungsten filament may differ from the arc.  Based 

on previous similar calibrations, film density o r  blackening as a function of inten- 

s i ty  and wavelength can be expected to yield an absolute intensity calibration 

accurate to - + 20%, A recording microdensitometer is available. 

PRELIMINARY RESULTS 

The a r c  radiation is from both the electrode spots and the a r c  column. The 

spot radiation consists of a metallic spectrum characteristic of the firing wire  

and electrode material. 

The column radiation is mainly molecular band radiation from the first nega- 
2 + 2  + 2 - 2 e The vibrational tive system of the N2 molecule. The transition is 

U g 
bands seen a r e  v?, v f l  = 0,O; l , l ,  the Av = v" - v' = +1 sequence (0 , l ;  1 ,2 ;  2 ,3  

etc), and a somewhat fainter Av = +2 sequence (v', v" = 0,2;1,3 etc). The indi- 

vidual rotational structure is not resolved within the bands. 

+ 

No other band systems which might be present in  hot air a re  seen in the range 
0 

3800-6500 A. The lack of O2 Schuman-Runge, NO Beta bands o r  a strong continuum 

(0- free-bound) seem qualitatively consistent with the radiation expected from air 

in the range 7000-10,000 OK and p/po - (Ref. 1). 

18 



Some Na and Cu atom lines are also present in the column. Sodium is a very 

common impurity, while the copper comes from both the firing wire and the elec- 

trodes. The presence of these lines in the column indicates that under some 

conditions electrode material is introduced into the column. The metallic lines 

are not always present in the column however, but when they are present they 

will provide another convenient measure of temperature. 

One further question arising because of the metallic atom in the column is 

whether the assumption of pure air, used in relating the measured conductivity 

to a temperature, is reasonable. The impurities seen a re  more easily ionized 

than air and at low temperatures will supply most of the free electrons. At higher 

temperatures most of the electrons come from the air itself and the presence of 

small amounts of metallic impurities does not affect the pure air assumption. 

The quantity and kind of impurity a re  both important as well as the temperature 

and further study is contemplated. 

An example of the slitless spectra is included as Fig. B1. Because the grat- 

ing rulings were not parallel to the arc, the dispersion was not perpendicular to 

the spectral lines and therefore this particular spectrogram is suitable only for 

qualitative purposes 

One further feature should be noted. Successive spectra taken at 1/4 sec 

intervals of the a r c  do not exhibit large differences in either the intensity o r  nature 

of the radiation from the column. The assumption of steady state conditions dur- 

ing a run may therefore be quite reasonable. 

FUTURE WORK 

+ The N first negative system so far appears usable for possible measure- 2 
ments of (a) the absolute intensity yielding an electronic excitation temperature 

and (b) the vibrational energy distribution of the Av = 0 and Av = 1 sequences, 

yielding vibrational temperature of N2 . The rotational energy distribution is 

probably no longer a strong enough function of temperature to be usable over 

the limited range of any one band which is free from the interference of other 

bands 

+ 
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+ It is hoped to calculate the radiant emission from the N2 first negative system 

and then plot a ser ies  of curves showing the spectral emission as a function of 

wavelength for temperatures of interest with the spectral resolution expected. 

Comparison with the measured intensity distribution will then be quite simple. 

The copper lines which are present in the a r c  will provide further indications 

of LTE. 

Reference 1. "Radiant Emission from High Temperature Equilibrium Air ,  
Breene, R.G. and Nardone, M.,  J. Quant. Spect. Rad. Transfer, Vol. 2, 
1962, p. 273. 

or  

General Electric Space Sciences Lab Tech. Infor. Series R615D020, May 
1961. 
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Appendix C 

PRELIMINARY DESIGN OF MAGNETIC FIELD COILS 

Stuart W. Bowen 

Introduction 

The detailed study of the structure,transfer mechanisms and stabilization 

of an arc in a cross flow requires close control of the perpendicular flow,current 

and .magnetic field vectors. The generation of a uniform external magnetic field, 

over the region of the a r c  in the cross flow, by means of magnetic field coils is 

considered here. A maximum deviation from uniformity of . 01 B over this re -  

gion was considered consistent with the other features of the tunnel design. The 

magnetic field is oriented so that is opposite to V and the design value of 

B = CD pv Darc/21. If we assume CD = 1.0, BZ = 100 gauss will balance a 
500 amp a rc  having a diameter of 1 crn against a speed of about 30 m/sec at 
atmospheric pressure. 

Z 

x 
2 

Z 

One simple method for providing this field is by the use of a pair of air core 

field coils with their axis perpendicular to the plane of V a n d i .  

The central holes in the coils can be used to view the a r c  perpendicular to the flow. 
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For simplicity only uniform current density rectangular cross section co- 

axial circular coils were evaluated. The plane defined by the a r c  current and flow 

velocity vectors was taken to be midway between the coil faces. 

A Helmholtz pair immediately suggests itself as a coil configuration giving a 

very uniform axial field component. The Helmholtz configuration positions the 

two coils so that a B az = 0 midway between the coil pair, but unfortunately 2 J  
provides a uniform axial field only over a rather limited central region. The 

off axis value of BZ decreases from the value on axis, falling below .99  BZ 

(r = 0) at a very small fraction f of the inner coil radius a 

for sufficiently uniform BZ over a given a r c  length 1 = 2 fa  would therefore re- 
quire extremely heavy, large diameter cumberson and expensive coils e 

By relaxing the Helmholtz spacing restriction,one finds that the off axis 
mid plane BZ(r) can be made first to increase slightly and then decrease, yield- 

ing a fractional radius f = r/a at which the field has deviated by 1% from the 

central value, that is substantially increased over the Helmholtz configuration. 

The requirement 1' 

1 

1' 

1.01 

Increase in Radial 
Extent of Uniform 

Field .99 -- 

I Helmholtz 

r/al = p 
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Since this fractional radius corresponds to a given physical arc half length, 

the scale of the coils can be correspondingly reduced. 

The precise nature of the shape of the BZ(r)/Bz(0) curve as a function of 

p = r/a depends on the nondimensional coil thickness h = 2L/al (L is the physical 

coil thickness), the outer to inner coil radius ratio a = a /a 
sional coil spacing 6 = D/2a where D is half the distance between inner coil faces. 

Thus f = f(a, A, 6). Variation of the parameters a, h and 6 allow one to vary the 

fractional radius and maximize it. However using this fraction radius togehter 

with a, h and 6 one can then express other parameters of interest such as coil 

mass, power required for a given magnetic field, current, voltage coil heating 

rate (power/mass) as functions of a, A, 6, the coil material properties such as 

density, conductivity, etc. , and the dimensional distance I = 2 fa  over which 

the given field uniformity is required. Rather than simply maximizing f as 
a function of a, h and 6, one can now optimize the effects of each of these quan- 

tities of interest or,  for instance, minimize the coil weight while keeping the 

power, heating rate current and voltage within usable bounds for a given clear- 

ance between the coil faces. 

1 
and the nondimen- 2 1’ 

1 

1 

Because the axial magnetic field at an off axis point must be found by nu- 

merical quadrature the entire optimization procedure must be performed 

numerically e 

Magnetic Field Calculations 

The calculation of B (r, z) resulting from a thick finite coil has been pro- 
Z 

grammed for digital computation using the formulas given in Ref 1. The field 

can be calculated at any point within the volume bounded by the inner coil radius 

and the coil faces by summing the contribution due to each coil. A program wits 

also prepared which links the IBM 7094 to a Calcomp digital plotter, yielding 

inked graphs of the magnetic field. Other quantities such as the angle between 

the total field vector and the z axis, the nondimensional values of mass, power, 

voltage, current and rate of temperature rise are printed out as functions of the 

coil configuration parameters. 

24 
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In the process of writing the above very extensive program the field and 

field angle produced singly and in  pairs by the following coil configurations 

were also programmed: 

1. 

2. Finite sheet solenoid. 

3. Washer having negligible thickness. 

In these calculations the finite coil construction was taken to be a thin cop- 

Loop with negligible cross section. 

per strip wrapped together with an insulating mylar tape in a radial spiral. 

Preliminarv Results 

The calculations are not yet complete but a few preliminary conclusions have 

appeared. 

1. It is possible to produce BZ uniform to 1% over as much as 50% to 60% 
of the inner coil radius, consistent with the required coil separation, 
which here requires 6 - > f .  

The optimal coil shape for minimum mass consistent with reasonable 
values of current, power, etc., appears to be a very thin pancake coil 
almost like a washer with an outer to inner radius ratio on the order 
of 2 and a thickness to twice inner radius ratio on the order of . lo .  
The optimal spacing between the coil faces divided by the inner coil 
radius is then about 1. 

2. 

3. The values of current, voltage, power, and temperature rise for the 
magnetic fields required (Bz = 100 gauss over an a r c  length of 10 cm) 
a r e  quite reasonable. 

The B curves as functions of p = r/a in planes away from the mid 
plane aowly develop an  off axis ear as one moves toward one coil 
face but reasonably uniform values of BZ (i. e. less than a few percent 
variation) are found for planes as much as half way to one coil face. 

4. 1 

As an example, the configuration shown in Fig. C1 will produce 100 gauss 

uniform to 1% over a 10 cm length (+ - 5 cm radius) in the mid plane of the coils 

and give - 10 cm clearance between the coil faces. The coil construction was 

taken to  be a 5 mil copper strip wrapped together with a 3 mil mylar insulating 

tape. While this design is probably not the best that can be done, it would 
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COILS 

JET BOUNDARY 
IOXlO 

B at Center = 100 GAUSS 

Cur ren t  I = 3.42 AMP 

Voltage V = 14.3 Volts 

Power P = 49 WattlCoiI 

Mass Ah = 9. I KglCoiI 

dTldt Rate of = 0.05 Oclsec 
Temp Rise 

a =  2.0 

X = . 1075 

8=.55 
f =.55 

4 1.9+ 
Fig. Cl. Example of magnet coil giving BZ uniform to 1% over 10 em arc length 

and 10 cm clearance between pole faces (dimensions in cm). 
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provide a feasible coil pair. As a matter of interest the coil weight required 

to produce a uniform field over a given arc length was decreased by a factor of 

30 over the configuration initially tried. 

As an example of the magnetic field calculations, the value of B (r, z) 
Z 

(nondimensionalized by Boo/jcl;tl, j = current density in coil, a1 = inner coil 

radius, Boo is field at center, p = permeability) as a function of r (nondimen- 

sionalized by al) for various different planes is shownin Fig. C2. The value 

z /D = 1.0 refers to the mid plane, halfway between the two coils, and z /D 
= .50 is the plane halfway from the center to one coil face. Although X = . 5,L/al 

= .125 here, the field for h = . lo75 is nearly the same. 

1 1 

Reference 1. Axial and Radial Magnetic Fields of Thick Finite Length Solenoids, 
G.V. Brown, L. Flax, E.C. Hean, J.C. Laurence, NASA TR R-170, 
December 1963. 

I 
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I .oo 

a /a  = 2.0 
B (0,D) = 0.1259 

I 
D/a, = 0.55 
L/a, = 0.0625 

Fig. C2. Magnetic field properties. 
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